Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle.
نویسندگان
چکیده
Rubisco is the predominant enzymatic mechanism in the biosphere by which autotrophic bacteria, algae, and terrestrial plants fix CO(2) into organic biomass via the Calvin-Benson-Basham reductive pentose phosphate pathway. Rubisco is not a perfect catalyst, suffering from low turnover rates, a low affinity for its CO(2) substrate, and a competitive inhibition by O(2) as an alternative substrate. As a consequence of changing environmental conditions over the past 3.5 billion years, with decreasing CO(2) and increasing O(2) in the atmosphere, Rubisco has evolved into multiple enzymatic forms with a range of kinetic properties, as well as co-evolving with CO(2)-concentrating mechanisms to cope with the different environmental contexts in which it must operate. The most dramatic evidence of this is the occurrence of multiple forms of Rubisco within autotrophic proteobacteria, where Forms II, IC, IBc, IAc, and IAq can be found either singly or in multiple combinations within a particular bacterial genome. Over the past few years there has been increasing availability of genomic sequence data for bacteria and this has allowed us to gain more extensive insights into the functional significance of this diversification. This paper is focused on summarizing what is known about the diversity of Rubisco forms, their kinetic properties, development of bacterial CO(2)-concentrating mechanisms, and correlations with metabolic flexibility and inorganic carbon environments in which proteobacteria perform various types of obligate and facultative chemo- and photoautotrophic CO(2) fixation.
منابع مشابه
CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxyl...
متن کاملCO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs
While mechanisms of different carbon dioxide (CO2 ) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CB...
متن کاملSynthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO
BACKGROUND With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO2, a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of meta...
متن کاملEngineering cyanobacteria for increased growth and productivity
Liang, F. 2018. Engineering cyanobacteria for increased growth and productivity. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1616. 63 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0201-0. Increasing the photosynthetic efficiency is one of the strategies to increase the crop yields to meet the requirement of 50% more food by ...
متن کاملCorrigendum: New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation
Ralstonia eutropha is a facultative chemolithoautotrophic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle for CO2 fixation. This study showed that R. eutropha strain H16G incorporated (13)CO2, emitted by the oxidative decarboxylation of [1-(13)C1]-glucose, into key metabolites of the CBB cycle and finally into poly(3-hydroxybutyrate) [P(3HB)] with up to 5.6% (13)C abundance. The carbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 59 7 شماره
صفحات -
تاریخ انتشار 2008